Energy conserving discontinuous Galerkin spectral element method for the Vlasov-Poisson system

نویسندگان

  • Éric Madaule
  • Marco Restelli
  • Eric Sonnendrücker
چکیده

We propose a new, energy conserving, spectral element, discontinuous Galerkin method for the approximation of the Vlasov–Poisson system in arbitrary dimension, using Cartesian grids. The method is derived from the one proposed in [ACS12], with two modifications: energy conservation is obtained by a suitable projection operator acting on the solution of the Poisson problem, rather than by solving multiple Poisson problems, and all the integrals appearing in the finite element formulation are approximated with Gauss–Lobatto quadrature, thereby yielding a spectral element formulation. The resulting method has the following properties: exact energy conservation (up to errors introduced by the time discretization), stability (thanks to the use of upwind numerical fluxes), high order accuracy and high locality. For the time discretization, we consider both Runge–Kutta methods and exponential integrators, and show results for 1D and 2D cases (2D and 4D in phase space, respectively).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous Galerkin Methods for the Multi-dimensional Vlasov-poisson Problem

We introduce and analyze two new semi-discrete numerical methods for the multi-dimensional Vlasov-Poisson system. The schemes are constructed by combing a discontinuous Galerkin approximation to the Vlasov equation together with a mixed finite element method for the Poisson problem. We show optimal error estimates in the case of smooth compactly supported initial data. We propose a scheme that ...

متن کامل

Discontinuous Galerkin Methods for the One-dimensional Vlasov-poisson System

We construct a new family of semi-discrete numerical schemes for the approximation of the one-dimensional periodic Vlasov-Poisson system. The methods are based on the coupling of discontinuous Galerkin approximation to the Vlasov equation and several finite element (conforming, non-conforming and mixed) approximations for the Poisson problem. We show optimal error estimates for the all proposed...

متن کامل

Convergence analysis for Backward-Euler and mixed discontinuous Galerkin methods for the Vlasov-Poisson system

We construct and analyze a numerical scheme for the two-dimensional Vlasov-Poisson system based on a backward-Euler (BE) approximation in time combined with a mixed finite element method for a discretization of the Poisson equation in the spatial domain and a discontinuous Galerkin (DG) finite element approximation in the phase-space variables for the Vlasov equation. We prove the stability est...

متن کامل

Streamline diffusion methods for the Vlasov-Poisson equation

— We prove error estimâtes for the streamline diffusion and the discontinuous Galerkin finite element methods for discretization of the Vlasov-Poisson équation. Résumé. — Nous démontrons des estimations d'erreur pour la méthode de Galerkin discontinue pour la discrétisation de l'équation de Vlasov-Poisson.

متن کامل

Energy-conserving discontinuous Galerkin methods for the Vlasov-Maxwell system

In this paper, we generalize the idea in our previous work for the Vlasov-Ampère (VA) system [8] and develop energy-conserving discontinuous Galerkin (DG) methods for the Vlasov-Maxwell (VM) system. The VM system is a fundamental model in the simulation of collisionless magnetized plasmas. Compared to [8], additional care needs to be taken for both the temporal and spatial discretizations to ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 279  شماره 

صفحات  -

تاریخ انتشار 2014